Influence of channel subunit composition on L-type Ca2+ current kinetics and cardiac wave stability.

نویسندگان

  • Vadim Gudzenko
  • Yohannes Shiferaw
  • Nicoletta Savalli
  • Roshni Vyas
  • James N Weiss
  • Riccardo Olcese
چکیده

Previous studies have demonstrated that the slope of the function relating the action potential duration (APD) and the diastolic interval, known as the APD restitution curve, plays an important role in the initiation and maintenance of ventricular fibrillation. Since the APD restitution slope critically depends on the kinetics of the L-type Ca(2+) current, we hypothesized that manipulation of the subunit composition of these channels may represent a powerful strategy to control cardiac arrhythmias. We studied the kinetic properties of the human L-type Ca(2+) channel (Ca(v)1.2) coexpressed with the alpha(2)delta-subunit alone (alpha(1C) + alpha(2)delta) or in combination with beta(2a), beta(2b), or beta(3) subunits (alpha(1C) + alpha(2)delta + beta), using Ca(2+) as the charge carrier. We then incorporated the kinetic properties observed experimentally into the L-type Ca(2+) current mathematical model of the cardiac action potential to demonstrate that the APD restitution slope can be selectively controlled by altering the subunit composition of the Ca(2+) channel. Assuming that beta(2b) most closely resembles the native cardiac L-type Ca(2+) current, the absence of beta, as well as the coexpression of beta(2a), was found to flatten restitution slope and stabilize spiral waves. These results imply that subunit modification of L-type Ca(2+) channels can potentially be used as an antifibrillatory strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of channel subunit composition on L-type Ca current kinetics and cardiac wave stability

Vadim Gudzenko,* Yohannes Shiferaw,* Nicoletta Savalli, Roshni Vyas, James N. Weiss, and Riccardo Olcese Department of Anesthesiology, Division of Molecular Medicine, Department of Medicine, Division of Cardiology, and Cardiovascular Research Laboratory, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles; Department of Physics, California State University N...

متن کامل

Differential regulation of skeletal muscle L-type Ca2+ current and excitation-contraction coupling by the dihydropyridine receptor beta subunit.

The dihydropyridine receptor (DHPR) of skeletal muscle functions as a Ca2+ channel and is required for excitation-contraction (EC) coupling. Here we show that the DHPR beta subunit is involved in the regulation of these two functions. Experiments were performed in skeletal mouse myotubes selectively lacking a functional DHPR beta subunit. These beta-null cells have a low-density L-type current,...

متن کامل

Accessory subunit KChIP2 modulates the cardiac L-type calcium current.

Complex modulation of voltage-gated Ca2+ currents through the interplay among Ca2+ channels and various Ca(2+)-binding proteins is increasingly being recognized. The K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for K(V)4.2 and a component of the transient outward K+ channel (I(to)), is a Ca(2+)-binding protein whose regulatory functions do not appear ...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2007